Jump to content

New Method Developed for Stabilizing Qubits


Recommended Posts

As powerful as modern computers become, there are some operations they will never be able to do very well. Quantum computers however, do have the potential to complete some of these operations very quickly, because of the quantum mechanical effects they have at their disposal. The catch is that quantum mechanical systems are as fragile as they are powerful, but researchers at MIT have developed a new means of stabilizing quantum bits.

In traditional computer, information is stored with the charge of electrons, but in quantum computers, the quantum bits or qubits store information with properties that can enter a superposition. Superposition is a quantum mechanical phenomenon that allows a particle to exist in multiple, usually exclusive states, but is also very fragile. The qubit in this case is a nitrogen-vacancy (NV) center within a diamond. A pure diamond is comprised of carbon, but researchers discovered that by replacing a carbon atom with a nitrogen atom, and removing another carbon atom next to it, creates a quantum system that can be used as a qubit. What the researchers did is use microwave exposure to entangle the state of the electrons within the nitrogen-vacancy, with the state of the nitrogen atom's nucleus. This entanglement means that if anything goes wrong when the quantum computations are done, both the NV center and the nucleus will be affected. After the computation is completed, the nucleus and NV center are disentangled and are exposed to additional microwaves. These microwaves have been calibrated though, so that their effect on the NV center depends on the state of the nitrogen nucleus, so only if an error occurred would the qubit be touched.

With experiments the researchers found this method allowed the qubit to stay in it superposition for about a thousand times longer than if the method were not used. Obviously that is a significant accomplishment and we could see it quickly being used to as part of new protocols for quantum computing.

Source: MIT

Back to original news post

Share this post

Link to post
Share on other sites


  • Create New...